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(57)	 ABSTRACT

Modeling and simulation of free and forced structural vibra-
tions is essential to an overall structural health monitoring
capability. In the various embodiments, a first principles
finite-difference approach is adopted in modeling a structural
subsystem such as a mechanical gear by solving elastody-
namic equations in generalized curvilinear coordinates. Such
a capability to generate a dynamic structural response is
widely applicable in a variety of structural health monitoring
systems. This capability (1) will lead to an understanding of
the dynamic behavior of a structural system and hence its
improved design, (2) will generate a sufficiently large space
of normal and damage solutions that can be used by machine
learning algorithms to detect anomalous system behavior and
achieve a system design optimization and (3) will lead to an
optimal sensor placement strategy, based on the identification
of local stress maxima all over the domain.

24 Claims, 28 Drawing Sheets

-3	 -2	 -1	 0	 1	 2	 3



US 7,574,338 B1
Page 2

OTHER PUBLICATIONS

Jameson, "Essential elements of computational algorithms for aero-
dynamic analysis and design", National Aeronautics and Space
Administration, Dec. 1997.*
Ramjikamakoti, "Computational aeroelasticity using pressure based
solver", University of Florida, 2004.*
Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, 1981,
80-83, Dover Publications, Inc., New York.
Kant, New Boundary Constraints for Elliptic Systems Used in Grid
Generation Problems, Journal of Computational Physics, 2003,476-
492, 189, Elsevier Science B.V.
Kant, Structural Vibration Signature Modeling, Industry Day, NASA
Ames Research Center, 2004.
Kant, Fiddle: A Computer Code for Finite Difference Development
of Linear Elasticity in Generalized Curvilinear Coordinates, Jan.
2005, NASA/TM-2005-213450.
Kant, Finite Difference Modeling and Simulation of Idealized Gear
Vibrations, 5th Int. Conf. Structural Health and Monitoring, Sep.
2005, Stanford University, California.
Kant, et al., Full Viscous Modeling in Generalized Coordinates of
Heat Conducting Flows in Rotating Systems, AIAA J. Thermophys-
ics and Heat Transfer, 1996, 621-626, 10-4.

Kant, et al., Automated Gear Teeth Grid Generation via Solution of
Elliptic Pdes, SIAM Conference on Geometric Design and Comput-
ing, Nov. 5-8, 2001, Sacramento, CA.
Kant, et al., Machine Learning for Detecting and Locating Damage in
a Rotating Gear, SAE Transactions, 2005, Paper 2005-013371, SAE
International.
Love, A Treatise on the Mathematical Theory of Elasticity, Cam-
bridge at the University Press, 146-148, 1934.
Madariaga, Dynamics of an expanding circular fault, Bulletin of the
Seismological Society of America, 1976, 639-665, 66-3.
Oza, et al., Machine Learning for Fault Detection in a Rotating Gear,
SAE World Aerospace Conference, Oct. 3-6, 2005, Paper 05WAC-
118, Dallas, Texas.
Timoshenko, et al., Theory of Elasticity, 1934, 80-82 and 388-390,
McGraw-Hill, Inc.
Virieux, SH-Wave Propagation in Heterogeneous Media: Velocity-
Stress Finite-Difference Method, J. Geophysics, Nov. 1984, 1933-
1957, 49-11.

* cited by examiner



3

2

2	 3

U.S. Patent	 Aug. 11, 2009	 Sheet 1 of 28	 US 7,574,338 B1



0.005

0.0045

0.004

0.0035

V) 0.003

()
0.0025

V) 0.002

U.S. Patent
	

Aug. 11, 2009	 Sheet 2 of 28	 US 7,574,338 B1

0.0015

0.001

0.0005

0^
1 1.5	 2	 2.5

Radial Coordinate

FIG. 2A

3



U.S. Patent
	

Aug. 11, 2009	 Sheet 3 of 28	 US 7,574,338 B1

0.005

0.0045

0.004

0.0035

0.003

V/
(n 0.0025

0.002

0.0015

0.001

0.0005

0

-0.0005
1	 1.5	 2	 2.5

	
3

Radial Coordinate
FIG. 2B



U.S. Patent	 Aug. 11, 2009	 Sheet 4 of 28	 US 7,574,338 B1

1.2e-05

1 e-05

8e-06

V)
V)

6e-06
a-J

4e-06

2e-06

1	 1.5	 2	 2.5	 3

Radial Coordinate
FIG. 3A

0



1.8

1.6

1.4

1.2

^ 1

Cn 0.8

0.6

0.4

0.2

X.X.
X

U.S. Patent	 Aug. 11, 2009	 Sheet 5 of 28	 US 7,574,338 BI

0
1	 1.5	 2	 2.5
	

3

Radial coordinate
FIG. 3B



U.S. Patent	 Aug. 11, 2009	 Sheet 6 of 28	 US 7,574,338 B1

FIG. 4



0.0045

0.004

0.0035

0.003

V)V) 0.0025

0.002

0.0015

U.S. Patent	 Aug. 11, 2009	 Sheet 7 of 28	 US 7,574,338 BI

0.005

0.001

0.0005

0

-0.0005
1	 1.5	 2	 2.5

	
3

Radial Coordinate

FIG. 5A



U.S. Patent	 Aug. 11, 2009	 Sheet 8 of 28	 US 7,574,338 BI

0.005

0.0045

0.004 -

0.0035 -

0.003 -

UO
(n 0.0025 -

0.002 -

0.0015 -

0.001 -

0.0005 -	

/0 -/"

-0.0005
1 1.5	 2	 2.5	 3

Radial Coordinate

FIG. 5B



(n 0.003

V)
0.0025

0.002

0.0015

U.S. Patent	 Aug. 11, 2009	 Sheet 9 of 28	 US 7,574,338 B1

0.005

0.0045
^x

0.004	 X

0.0035

0.001

0.0005

0
1	 1.5	 2	 2.5

	
3

Radial Coordinate

FIG. 5C



U.S. Patent
	

Aug. 11, 2009	 Sheet 10 of 28	 US 7,574,338 BI

0.0003

0.00025

xxxxx

x +. + + +-  x^

0.0002
	 r	 _	 +

c^ 0.00015

m

0.0001

5e-05

0 m

-1	 -0.5	 0

Radial Coordinate

FIG. 6A

0.5	 1



U.S. Patent	 Aug. 11, 2009	 Sheet 11 of 28	 US 7,574,338 BI

0.00026

X XXXXXX

0.00024
	 + -

0.00022

(n	 0.0002

U)

0.00018

rn
C
M

0.00016

0.00014

0.00012

0.0001
-1 -0.5	 0	 0.5	 1

Radial Coordinate

FIG. 6B



U.S. Patent
	

Aug. 11, 2009	 Sheet 12 of 28	 US 7,574,338 BI

0.0003

0.00025
)K^^)K%

x xx XXXXX^

0.0002

Na
m

0.00015

m

0.0001

5e-05

-0.5	 0
	

0.5	 1
0

-1

Radial Coordinate

FIG. 7A



U.S. Patent
	

Aug. 11, 2009	 Sheet 13 of 28	 US 7,574,338 BI

0.00026

XXXXXXX
0.00024

0.00022

U)	 0.0002
aL̂

coco

0.00018
C
N

N

~ 0.00016

0.00014

0.00012

0.0001 L
-1 -0.5	 0
	

0.5	 1

Radial Coordinate

FIG. 7B



U.S. Patent	 Aug. 11, 2009	 Sheet 14 of 28	 US 7,574,338 B1

0.5

0

-0.5

-1
-1	 -0.5	 0	 0.5

FIG. 8A



U.S. Patent	 Aug. 11, 2009	 Sheet 15 of 28	 US 7,574,338 BI

FIG. 8B



U.S. Patent	 Aug. 11, 2009	 Sheet 16 of 28	 US 7,574,338 B1



U.S. Patent
	

Aug. 11, 2009	 Sheet 17 of 28	 US 7,574,338 B1

0.0015

Cn
Cn
L-	

0.001
Cn

t

/	 l
x x

	

x	 x

x	 ^,	 x

x

x x	 `^	 x

x

x
x

x

xx.
-kx

Cu
w

0.0005

0
0
	

0.5
	

1
	

1.5

Radial coordinate

FIG. IOA



U)
Cn

Cn

c
a^

F-

0.004

0.002

U.S. Patent
	

Aug. 11, 2009	 Sheet 18 of 28	 US 7,574,338 B1

0.008

0.006

,,x

0
	

1+ X

XI

0
	

0.5
	

1
	

1.5

Radial coordinate

FIG. IOB



U.S. Patent	 Aug. 11, 2009	 Sheet 19 of 28	 US 7,574,338 B1

Tooth # 1
damaged

Z/,/*

Tooth #10

FIG. 11



. 3
5n10 Tangential Stress At Halfway Point From Inner Radius

4

3
N
N
i
CO

C
CD
0)

C^I

0

U.S. Patent
	

Aug. 11, 2009	 Sheet 20 of 28	 US 7,574,338 BI

	

-1 1 	 1	 1	 1	 1	 1	 1	 1	 1

	

0	 0.005	 0.01	 0.015	 0.02	 0.025	 0.03	 0.035	 0.04
Time, sec.

FIG. 12A



.3
0 x 10

.5
Tangential Stress At Three-Quartersway Point From Inner radius

0

-0.5

vi
N

v

-2

-2.5

-3

-3.5
D 0.03	 0.035	 0.040.005	 0.01	 0.015	 0.02	 0.025

Time, sec.

FIG. 12B

U.S. Patent	 Aug. 11, 2009	 Sheet 21 of 28	 US 7,574,338 BI



U.S. Patent
	

Aug. 11, 2009	 Sheet 22 of 28	 US 7,574,338 BI

Tangential Stress At Outer Radius
0.05

Damaged Tooth 1
Tooth 10

0.04

0.03

0.02

	 damage

0.03	 0.035	 0.040.005	 0.01	 0.015	 0.02	 0.025

Time, sec.

ar
0) 0.01
c^

0

-0.01

-0.02 L
0

FIG. 12C



U.S. Patent	 Aug. 11, 2009	 Sheet 23 of 28	 US 7,574,338 B1

-3

4x10

3

2

ar
1

Ce	
bl

Stf

0

-1

-2
0

Radial Stress At Halfway Point From Inner Radius

Damaged Tooth 1
-	 Tooth 10

*---- 
damage

0.005	 0.01	 0.015	 0.02	 0.025
	

0.03	 0.035	 0.04
Time, sec.

FIG. 13A



U.S. Patent
	

Aug. 11, 2009	 Sheet 24 of 28	 US 7,574,338 B1

•3

1.5 10

1

0.5

0

-2

-2.5

Radial Stree At Three-.Quartersway Poirit From Nner Radius

cd

c^
cc

-1.5

	

-31
	 1	 1	 1	 1	 I	 I

	0 	 0.005	 0.01	 0.015	 0.02	 0.025	 0.03	 0.035	 0.04
Time, sec.

FIG. 13B



-i
16 x 10

14

12

10

Shear Stress At Halfway Point From Inner Radius

8

aî
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FINITE -DIFFERENCE SIMULATION AND 	 upon reading and understanding the present specification,
VISUALIZATION OF ELASTODYNAMICS IN 	 there is a need in the art for alternative modeling and simu-

TIME-EVOLVING GENERALIZED	 lation methods for structural systems.
CURVILINEAR COORDINATES

5	 SUMMARY OF THE INVENTION
RELATED APPLICATIONS

Modeling and simulation of free and forced structural
This application claims priority to U.S. Provisional Patent

	 vibrations is an essential element of an overall health moni-
Application No. 60/647,720, entitled "Finite-Difference

	 toring capability for any structural system such as a rotorcraft
Simulation and Visualization of Elastodynamics in Time- to or any aerospace vehicle. In the various embodiments, a first
Evolving Generalized Curvilinear Coordinates," by Upender 	 principles finite-difference approach is adopted in modeling a
Kaul, and filed on Jan. 19, 2005, which is hereby incorporated

	 structural subsystem such as a mechanical gear by solving
by reference in its entirety. The invention unifies an earlier 	 elastodynamic equations in generalized curvilinear coordi-
invention, U.S. patent application Ser. No. 10/706,478,	 nates. While any structural subsystem can similarly be mod-
entitled "Enhanced Elliptic Grid Generation," by Upender 15 eled, thevarious embodiments are described with reference to
Kaul, and filed on Nov. 7, 2003, currently issued as U.S. Pat. 	 an annular disk, a thin solid disk and an idealized gear. Such
No. 7,231,329 on May 23, 2007, which claims priority to U.S. 	 a capability to generate a dynamic structural response has a
Provisional Patent Application No. 60/425,750, entitled

	 wide applicability in a variety of structural health monitoring
"Elimination of Parameter Input Requirement for Elliptic 	 systems. Not only does this capability serve as a tool for
Grid Generation Methods in Engineering," by Upender Kaul, 20 understanding the dynamic behavior of a structural system
and filed on Nov. 7, 2002 (both of which are hereby incorpo- 	 and hence its improved design, but it also serves as a means by
rated by reference in their entirety), and a new solution 	 which a sufficiently large space of normal and damage solu-
method based on finite differences to simulate structural

	
tions can be generated that can be used by a variety of

dynamic phenomena over time-varying grids in generalized
	 machine learning algorithms to detect anomalous dynamic

curvilinear coordinates.	 25 structural behavior of the system or to achieve a multi-func-
tion design optimization of the given structural system. This

	

STATEMENT OF GOVERNMENT INTEREST
	

capability will also aid in defining an optimal sensor place-
ment configuration over structural subsystems for health

The invention described herein was made by an employee 	 monitoring, by identifying areas of local maxima of mechani-
of the United States Government and may be manufactured 30 cal or thermal stress or loading. Such a capability to generate
and used by or for the Government of the United States of

	
vibration response from a subsystem will also be useful in the

America for governmental purposes without payment of any 	 area of vibration energy harvesting. Also, the methodology
royalties thereon or therefor.

	

	 can be used to track stress wave propagation in a structural
system which is useful in the health monitoring of such a

	

TECHNICAL FIELD OF THE INVENTION 	 35 system.
The methodology is based on physics-based first prin-

The present invention relates generally to numerical simu- 	 ciples, governing elastodynamics in the space-time domain.
lation of dynamic stresses, and in particular, to generalized

	
This innovation provides a powerful and yet simple method-

curvilinear coordinate formulation for finite-difference pre- 	 ology to compute structural dynamic variables of interest
diction of stresses in elastic bodies under rotation. 	 40 such as stresses over an entire grid mapped over or inside a

given body of interest directly in the time domain. The grid
BACKGROUND OF THE INVENTION	 can be allowed to deform in time as the solution evolves. The

simulation (deforming grids and stresses) canbe visualized as
Conventional simulation methods to solve structural

	
the solution proceeds in time; the simulation can be sus-

dynamics problems are in the domain of finite element tech- 45 pended at any point in time based on the visualization of the
nology where the problem is solved in the modal domain and 	 state of the system and the simulation can be resumed or
then the results are mapped into the time domain by appro- 	 terminated altogether according as the evolving solution pro-
priate transformations. 	 ceeds within the expectation bounds dictated by physics. The

Limitations of the prior art have been in the difficulty in 	 attractiveness of the innovation lies in the intuitiveness of the
deriving new three-dimensional elements for different appli- 5o approach where the physical variables such as stresses as well
cations of interest and the lack of ease in obtaining the tem- 	 as the deforming body can be visualized directly in space and
poral solution directly from the solution of governing elasto- 	 time, as the simulation proceeds.
dynamic pdes.	 This simulation technology incorporates an innovative

The need to know the state of a structural system during its 	 elliptic grid generation methodology that automatically
operation in terms of the physical output variables such as 55 updates the grid during the finite difference simulation of a
stresses and the geometric configuration of the system itself is 	 given structural system directly in the time domain. The struc-
essential for monitoring the system health. Such systems can	 tural simulation over such a geometry using elastodynamic
be tested, prior to launching them in their operational domain,	 partial differential equations (pdes) is itself innovative and
in a laboratory or through relatively inexpensive computa- 	 gives results directly in the time domain.
tional simulations. 	 60	 The various embodiments incorporate an enhanced elliptic

Such systems when subjected to space and time varying 	 grid generation algorithm (of the type described in U.S.
loads during their operation can throw the system into unsafe 	 patent application Ser. No. 10/706,478, currently issued as
states from the system's health perspective. It is therefore 	 U.S. Pat. No. 7,231,329 on May 23, 2007) and a new three-
essential to have a prior knowledge of such system states	 dimensional finite-difference elastodynamic pde solution
before the systems are commissioned.	 65 methodology in generalized coordinates. This software will

For the reasons stated above, and for other reasons stated
	

enable simulation of dynamics of structural systems with
below which will become apparent to those skilled in the art

	
deforming geometries directly in the time domain. An addi-
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tional reference is "New Boundary Constraints for Elliptic
Systems Used in Grid Generation Problems", J. Computa-
tional Physics, Vol. 189, 2003, pp 476-492, which is hereby
incorporated by reference in its entirety.

The solver of the various embodiments includes three main
components. The first component is the enhanced elliptic grid
generation algorithm that automatically updates the grid dur-
ing simulation. The second component is the elastodynamic
solver that solves the nine pdes, three for velocity components
and six for stress components in generalized curvilinear coor-
dinates over the grid generated by the first component. The
third component is a visualization tool, such as the OPENGL
based graphics and visualization software tool that animates
the solution in time as the simulation proceeds.

The various embodiments take any arbitrary three-dimen-
sional geometry and pass it through the grid solver that gen-
erates a smooth grid in generalized curvilinear coordinates
about the geometry and then solve the nine elastodynamic
pdes over each grid cell to yield the required structural solu-
tion. Any updates, if needed, are made to the geometry, a new
grid is generated about it, and the structural system is solved
again. This process is continued for each time step over the
required time of simulation. As the simulation proceeds,
results are analyzed and if desired, the simulation is sus-
pended and resumed or stopped altogether. Two novel and
unique features of his invention include 1) the innovative
enhanced elliptic grid generation algorithm under U.S. patent
application Ser. No. 10/706,478; and 2) a new finite differ-
ence based elastodynamic solver in three-dimensional gener-
alized curvilinear coordinates which solves for the structural
solution directly in the time domain. The overall uniqueness
of the innovation lies in that the methods of the various
embodiments facilitate autonomous updating of the compu-
tational grid in time as the simulation proceeds directly in the
time domain.

The various embodiments can be used to study a variety of
structural and fluid-structural (in conjunction with a fluid flow
solver) problems directly in the time domain in an intuitive
fashion, with an ability to inspect and assess the simulation
results as the simulation proceeds. There are a host of appli-
cations for this innovation from space to aerospace to medical
arenas, such as simulation of any structural system deployed
in space or on earth and any artificial medical prosthesis in
operation.

For one embodiment, the invention provides a method of
simulating time-dependent stress data for a structural system.
The method includes generating an elliptic grid representa-
tive of a geometry of the structural system, the grid compris-
ing a plurality of grid cells, solving elastodynamic partial
differential equations having velocity components and stress
components in generalized curvilinear coordinates over each
grid cell of the elliptic grid, updating the geometry of the
structural system in response to solving the elastodynamic
partial differential equations and generating a revised elliptic
grid representative of the updated geometry of the structural
system. For a further embodiment, the invention provides a
computer-usable medium containing computer-readable
instructions capable of causing a processor to perform the
method.

The invention still further provides methods and apparatus
of varying scope.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 is a representative grid of an annulus for use with an
embodiment of the invention.

4
FIGS. 2A-213 are plots of radial and tangential stress for an

annulus rotating at 100 rps comparing analytical and the
computed results for two different grid resolutions in accor-
dance with an embodiment of the invention at various grid

5 dimensions.
FIGS. 3A-313 are plots of radial and tangential stress for an

annulus rotating at 5 rps and 2000 rps, respectively, compar-
ing analytical and the computed results in accordance with an
embodiment of the invention at various speeds of rotation.

10	 FIG. 4 is a representative grid of an annular disk for use
with an embodiment of the invention.

FIGS. 5A-5C are plots of radial and tangential stress for a
thin annular diskrotating at 100 rps comparing analytical and
the computed results at various axial stations in accordance

15 with an embodiment of the invention.
FIGS. 6A-613 are plots of stress for a thin solid disk com-

paring analytical and the computedresults in accordance with
an embodiment of the invention at the quarter-thickness plane
of a disk using various grid resolutions.

20 FIGS. 7A-713 are plots of stress for a thin solid disk com-
paring analytical and the computedresults in accordance with
an embodiment of the invention at the mid-plane of a disk
using various grid resolutions.

FIG. 8A is a cross-sectional view of a representative three-
25 dimensional grid of a thin solid disk for use with an embodi-

ment of the invention.
FIG. 8B is a perspective view of the grid of FIG. 8A.
FIG. 9 is a cross-sectional view of a representative three-

dimensional grid of an idealized gear for use with an embodi-
30 ment of the invention.

FIGS. 10A-10B are plots of radial stress distributions
along three "radial' lines of the idealized gear of FIG. 9.

FIG. 11 is a cross-sectional view of a representative three-
dimensional grid of an idealized gear for use with an embodi-

35 ment of the invention and having a tooth region with reduced
rigidity.

FIGS. 12A-12C are plots of tangential stress signatures
over time at various locations between the inner radius and
outer radius at corresponding locations below a damaged

40 tooth and a normal tooth of the idealized gear of FIG. 11.
FIGS. 13A-13B are plots of radial stress signatures over

time at various locations between the inner radius and outer
radius at corresponding locations below a damaged tooth and
a normal tooth of the idealized gear of FIG. 11.

45 FIGS. 14A-14B are plots of shear stress signatures over
time at various locations between the inner radius and outer
radius at corresponding locations below a damaged tooth and
a normal tooth of the idealized gear of FIG. 11.

FIG. 15 is a plot of steady-state radial stress distribution of
50 the idealized gear of FIG. 11.

FIG. 16 is a plot showing a comparison between normal
and damage shear stress vibration signatures midway
between the inner and outer radii at tooth #10 of the idealized
gear of FIG. 11.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description of the present embodi-
ments, reference is made to the accompanying drawings that

60 form a part hereof, and in which is shown by way of illustra-
tion specific embodiments in which the inventions may be
practiced. These embodiments are described in sufficient
detail to enable those skilled in the art to practice the inven-
tion, and it is to be understood that other embodiments and

65 variations may be utilized without departing from the scope
of the present invention. The following detailed description
is, therefore, not to be taken in a limiting sense, and the scope
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of the present invention is defined only by the appended
claims and equivalents thereof.

Governing equation and boundary condition formulation
in generalized curvilinear coordinates in three dimensions
has been developed using the velocity-stress system of equa-
tions of elastodynamics for bodies in rotation. The attendant
partial differential equations are solved using a time-stag-
gered leap-frog scheme. The stress boundary conditions in
generalized coordinates are derived from a second order ten-
sor transformation from the Cartesian coordinate system. The
solution is based on first principles and does not involve
lumped parameter or distributed parameter systems
approach. The generalized curvilinear coordinate grids for
the geometries considered here are created using a new and
enhanced elliptic grid generation algorithm. The geometries
considered herein as representative embodiments are an
annulus, a thin annular disk, a thin solid disk and a thin
multi-tooth gear. The solver, referred to herein as Finite-
Difference Development of Linear Elasticity (FiDDLE), has
been developed to solve the governing equations and generate
the predictions. The predictions have been validated by com-
paring them with the corresponding closed-form axisymmet-
ric steady-state solutions for the annular and disk geometries.
Then, predictions are made for a complex geometry of a
multi-tooth thin spur gear in steady rotation as well as impul-
sive rotation from an initial position of rest. The present
methodology can be applied to study elastodynamics of com-
plex shaped bodies under arbitrary dynamic loading.

Nomenclature
E=Young's modulus of elasticity
f=body force

J=Jacobian of coordinate transformation
k=bulk modulus

M=metric coefficient matrix
R=right hand side vector
q, Q=velocity vector
u,v,w=velocity components
x=solution vector
x,y,z, t Cartesian coordinates and time coordinate
N Kronecker delta
X, µ=Lame constants
0—gradient operator
Q=rotational speed
p=material density
a--Poisson's ratio
ti—symmetric stress tensor
^, 'q, ^, e=generalized curvilinear coordinates and time

coordinate

Subscripts
i, j, k=indices for coordinate directions

Superscript
T=vector transpose.
The elliptic grid generation methodology makes it possible

to generate two-dimensional and three-dimensional grids
automatically around or inside arbitrary geometries, without
any need for human intervention. For dynamically changing
shapes, grids can be regenerated automatically during simu-
lation as and when required. This would be pertinent to cases
where a given geometry undergoes deformation such as bend-
ing and twist, or where a crack propagates. In the present
application of rotating gear component geometries, gear teeth
could be subject to deformation, pitting, wear, and eventually
cracks, and grids would need to be regenerated due to the
corresponding changes in the boundary configuration. Hav-
ing resolved the difficulty of automatically updating the grids

6
during a simulation, the finite-difference modeling of such
problems has now become attractive.

The need for numerical simulation of dynamic stresses
over gears in mesh in both normal and damaged states has

5 been delineated by the lack of any normal vibration data or
any anomalous vibration data that may reflect the presence of
gear damage such as in a pinion of an OH-58 helicopter
transmission. Such simulated "clean" and "fault data" would
aid in developing and enhancing fault-detection algorithms

10 for such rotating systems by first, calibrating the damage-
detection algorithms with the simulated clean vibration data
and second, by validating these damage detection algorithms
against simulated data corresponding to known damage. In
these simulations, various forms of damage canbe seeded and

15 allowed to propagate in time and the corresponding data
generated. In general, in such simulations, a vast variety of
faults can be introduced into the system of interest, and the
corresponding data could be recorded for use in the develop-
mental work on fault-detection algorithms.

20 Toward this end, as a first step, the present three-dimen-
sional solver has been developed and validated by comparing
its predictions with the known two-dimensional and three-
dimensional theoretical steady-state solutions. The agree-
ment has been shown to be good.

25
Governing Equations

The three-dimensional linear elastodynamic equations of
motion describing the principle of momentum conservation
and the constitutive equations governing the wave phenom-

30 ena within an isotropic elastic body can be written as a system
of nine equations, three for the velocities and six for the
stresses, respectively. The velocity equations are given by:

pag, ajz^j+f.	 Eq. 1

35 where the velocity vector, q =(u, v, w). The body force
vector is given by f,—(f,, fy, Q, and the symmetric stress
tensor, tip, has six distinct components. The stress tensor is
expressed by the following tensorial equation:

a t M div Q+p(ajq,+a,qj)	 Eq. 2
40

where div Q is the divergence of the velocity vector, Q (q,),
61J is the Kronecker delta, and where X and µ are the Lame
constants these elastic constants (e.g., µ,t,)e , is the rigid-
ity or the elastic shear modulus, e , is the strain caused by the

45 
stress tip, in the xy plane) characterizing the elastic behavior
of the body are related to the Young's modulus of elasticity E,
the Poisson's ratio a and the bulk modulus kby the following
relations:

E=µ(2µ+3T)/(µ+T)
50

1-E1(3 (1-2a))

55 The elastic quantities µ and X are functions of space for a
nonhomogeneous body.

In the rotating frame of reference, the velocity equations
(1) become:

60	
pag,aJTy+a,(IQXF212)+2E^j gjwk+f	 Eq.3

where IQ I is a constant rotational speed (Q —w,), r=(x,y,z)
is a positional vector, second and third terms on the right hand
side represent the centrifugal and Coriolis forces associated
with the rotating frame of reference.

65 In generalized orthogonal curvilinear coordinates, Equa-
tions 2 and 3, can be shown to assume the following flux-
conservative form:
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a ,(A/J)	 and the right-hand side vector,

+a^[(A ^^r (I /J) 	
r=ws12T, ,IVY Vq T,^,,,I V^ V^IT, iv^i2T,,,,,

vEllV^ITy^,iv^i z^^7

+a, [(EvJ)E r (1/J)(gxB+EyC+rED)]	 5	 In a two-dimensional Cartesian coordinate system (y,z),
the stresses would be related to their counterparts in the

+az;[(A1J)^t (1/.)(^,B+^YC+^,D)]=Rig	 Eq. 4	 generalized coordinates (q, ^) as:

where

A= [Pu,P°,PR ,Zxx,z, Z ,Z ,Zy,,Zu]T	 10	 T y = ^,2 [ I V I I ,2,T — 2 1 0 711 0 517z5zTn + I°S1271,2_, ]

B=[Z ,z,Z_,(T+2µ)µ,µvµw,Tu,O,Tu]7	 Ty, T_[— I V11IfSy5,T m + I VIIII D SI(11y5, +11,5Y)Tn —IVS1211yl,

C—[T,,T ,,,Ty,, kvµµ, 0,(k,+2p)vµw, kv] T 	 and

15	 1

D—[T_,Ty,,T,,,kw,0,µµ,LwNv,(L+2µ)w]7	 Tu= ,_[ I o11
IfSy2T,m- 2 1 ViIII V Iijy5YTnS+°Sh7yyT

7acobian of the transformation, 7, is given by a(x,y,z)/a(^,
and the metric quantities, fi t, fix, etc. have their usual

meanings. The right hand side column vector, R, contains the
centrifugal and Coriolis terms and additionally terms contain-
ing spatial derivatives of the elastic constants, for nonhomo-
geneous bodies.

Physical quantities are normalized with the Young's modu-
lus, E, the acoustic speed, +2µ p, and the characteristic
dimension such as the radius, r, for a solid disk or a shaft and
(rout r^) for an annulus or an annular disk.

Boundary Conditions
The two-dimensional and three-dimensional validation

examples presented here have corresponding axisymmetric
steady-state theoretical solutions, and the predictions are

directly compared with these theoretical solutions for a rotat-
ing annulus (two-dimensional), rotating thin annular disk
(three-dimensional) and a rotating thin solid disk (three-di-
mensional). Boundary conditions corresponding to these
closed-form solutions are transformed from the generalized
coordinate space, to Cartesian coordinates, (x,y,z),
using contravariant tensor transformation. For example, sec-
ond order stress tensor transformation between (x,y,z) space
and (,r^,^) space is:

3	 3

TV — 
Y, L/ ax ax Tdk

k=1 1-1

where x`=(,r^,^), i, j span space and 1, k span (x,y,z)
space. The contravariant stress tensor transformation given
above does not include normalizing factors. Using normal-
ization, this transformation in matrix form can be written as:

Mx=R

where the metric coefficient matrix,

^x 2^, ^y 2^, ^,	 ^y 2^y^,	 ^z
^x (^,']y +71,^Y) ^ylly (^Y ll, +'IX')	 01,
s ^y+4 Y ) (s +4)	 ^Y y (^y^Z + S Y^Z)	 ^Z^Z

M-
1y 2,1x,Iy 2,1xilz	 11y 11y,1z	 ^z

71,4 (71,y+4 71y) (71,^Z +471Z)	 llysy (71ysz+01')	 71Z^Z

S, 2^, Sy 2X sz	 Sy 2sysz	 Sz

solution vector,

x=[T_,T T_,T,,Tyz,T"1 T

where the 7acobian of the transformation, 7', is given by

20

a (x, Y) 
- Ily —71,4,

25
and 0 is the gradient operator. Here, the orthogonal general-
ized coordinates, (q, ^), correspond to the polar coordinates
(0 1 r)•

In general, for a three -dimensional case, the stress tensors

30 in the two coordinate systems would be related by the matrix
form given above, i.e., x=M-1R.

The velocity boundary conditions are either of the
Dirichlet type or of the Neumann type; the latter being
derived from the governing equations for the velocity vector,

35 once the stress tensor is updated at the boundaries according
to the preceding formulation.

Equation 4 in two-dimensional (y,z) or (q, ^) system can be
written as:

a A=M'AZ;+L'4,i +R	 Eq. 4a
40

where M' and L' are matrices containing the variable p and
various metric quantities, and R is the term containing body
forces and any traction by way of boundary conditions. Equa-
tion 4a can further be written as:

45	
a 4 — UAU 1Az;+L'A,i+R

	
Eq. 4b

or as:

a A=UX+L'4,i +R	 Eq. 4c

50 where X=AU-1A, is a vector of two incoming character
istics, two outgoing characteristics and one neutral character-
istic corresponding to the zero eigenvalue of the matrix M'.
Therefore, on the boundaries, the solution variables are thus

55 
expressed in terms of these characteristics.

Numerical Method
A second-order in time and space, time-staggered leap frog

method is used to integrate the velocity and stress equations.
Both the spatial derivatives and time derivatives are dis-

60 cretized using central differences. A very small numerical
damping term is used to eliminate the mesh drifting (check-
erboard) instability. For one embodiment, a sampling rate of
the order of 50 KHz is of interest, e.g., a 50 KHz sampling rate
for the flight data of the OH-58 helicopter. For a further

65 embodiment, the time step restriction imposed by the CFL
condition of hyperbolic systems akin to explicit methods for
integration of the dynamic system are of the same order as
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those posed by the sampling rate of interest. For example, for
a steel shaft of radius equal to 20 cm rotating at 100 revolu-
tions per second (rps), a typical time step may be of the order
of a microsecond, which translates to a simulation sampling
rate on the order of 100 KHz.

Results
The predicted values of stresses shown are normalized by

the Young's modulus, E=2.1x10 12 dyne/cm2, for the steel
gear considered here. The lengths are normalized by the inner
radius of the gear. Some steady-state theoretical results from
linear elasticity were used as validation and verification base
for the computations. Validation was done using three test
cases: a rotating annulus (two-dimensional), a rotating thin
annular disk (three-dimensional) and a rotating thin solid disk
(three-dimensional). Then, predictions for a multi-tooth thin
gear are presented.

Rotating Annulus
The thickness of the axisymmetric rotating annulus is

assumed to be sufficiently small as compared to its radius so
that the radial and tangential stresses do not vary over its
thickness. This case is thus referred to as a rotating annulus
here to avoid any confusion that may arise when we discuss
the three-dimensional rotating annular disk with small finite
thickness where theradial and tangential stresses do vary over
the thickness of the disk. The closed form solution for the
rotating annulus is given in Timoshenko, S. P. and Goodier, J.
N., Theory of Elasticity, McGraw-Hill, Inc., 1934. The
weight of the annulus is neglected. FIG. 1 is a representative
72x21 grid of an annulus for use with an embodiment of the
invention. The annulus includes 72 grid points in the circum-
ferential direction and 21 points in the radial direction. The
annulus further has an inner and outer radii of 10 cm and 30
cm, respectively.

Results for an annulus of the type shown in FIG. 1 are
shown for various grid dimensions and rotational speeds in
FIGS. 2A-213 and 3A-3B. FIG. 2A shows a comparison
between the analytical and the computed results at 100 rps.
The abscissa shows the coordinate along any radial line from
the inner radius to the outer radius, and the ordinate shows the
normalized stress. The analytical, or theoretical, radial and
tangential stress distributions along this radial ray are shown
in solid and dotted lines respectively, and the computed radial
and tangential stress distributions are shown in dashed and
dotted lines with crosses respectively. Agreement between
the computed and the analytical results is satisfactory. The
grid used for this case is 72x11, 11 points in the radial direc-
tion and 72 points along the circumferential direction. As the
grid is refined to 72x21, an improvement is seen in the pre-
dictions, and the comparison with the theoretical results is
good, as is shown in FIG. 2B.

Results for the rotational speed of 5 rps with a grid of
72x21 are shown in FIG. 3A. Agreement between the predic-
tions and the theoretical results is good, just as in the case of
100 rps. Next, results for a high rotational speed of 2,000 rps
with the same grid (72x21) are shown in FIG. 3B. Agreement
between the predicted and theoretical radial stress distribu-
tions continues to be good, but is subject to improvement with
a finer grid. Grid dependence of the solution will be shown
later in the case of a rotating thin solid disk.

Rotating Thin Annular Disk
An approximate theoretical solution of a rotating thin

annular disk is given in Love, A. E. H., A Treatise on the
Mathematical Theory of Elasticity, Dover, N.Y., 1944. The
problem is treated as that of plane stress, in which the only
nontrivial stress components are the radial and the tangential

10
stresses as in the case of the two-dimensional annulus, but
now they also have a weak dependence on the thickness of the
disk (along the axial direction). The thickness of the disk is
taken to be 2.5 cm, while the inner and outer radii of the disk

5 are 10 cm and 30 cm respectively, just as in the case of the
two-dimensional annulus. Thetheoretical solutionis in defect
near the ends, but is good at axial stations removed from the
end planes. Here, the radial stress does not vanish along the
outer or inner radii, as in the case of the annulus, but the

io resultant radial tension between any two planes not too close
to the end planes along the inner and outer radii vanishes.
FIG. 4 is a representative 72x21 x7 grid of an annular disk for
use with an embodiment of the invention, with 7 points along
the axial direction, 21 points along the radial direction and 72

15 points along the circumferential direction.
Results at three axial stations are shown in FIGS. 5A-5C.

FIG. 5A shows the stresses at the plane next to the end plane;
FIG. 5B shows the stresses at the section quarter thickness
removed from the end plane; FIG. 5C shows the stresses at the

20 mid-section of the disk. As before, predictions are shown with
lines with crosses. The rotational speed of the disk is taken as
100 rps, which is of the same order as the rpm rate of the
pinion gear for an OH-58 helicopter transmission. The agree-
ment between the predictions and the theory is quite good.

25 
Rotating Thin Solid Disk

An approximate theoretical solution of a rotating solid thin
disk is given in Timoshenko, S. P. and Goodier, J. N., Theory
of Elasticity, McGraw-Hill, Inc., 1934 and Love, A. E. H., A

30 Treatise on the Mathematical Theory of Elasticity, Dover,
N.Y., 1944. This case is similar to the thin annular disk with
the difference that there is no inner radius here, and therefore
the attendant vanishing radial tension condition at the inner
radius becomes moot.

35 A non-orthogonal cross-sectional grid is generated for the
solid disk to avoid a polar coordinate singularity at the origin.
Since the governing equations used in this study are strictly
valid for an orthogonal curvilinear coordinate system, there is
bound to be some discrepancy between the predictions and

40 theory. The choice of the non-orthogonal cross-sectional grid
in this case will thus help quantify the prediction errors asso-
ciated with departure from a strictly orthogonal grid.

The first grid, a coarse grid used for the thin solid disk is
taken to be 21 x21 x7, with 7 points along the axial direction,

45 21 points along the radial and circumferential directions. The
radius of the disk is considered to be 10 cm and its thickness
2.5 cm. The grids are progressively refined from 21 x21 x7 to
4lx4lx11 to 61x6lx11 to 81x81x11 to see the improvement
in the predictions.

50 Boundary conditions at the end planes are imposed from
theory. The rotational speed of the disk is taken as 100 rps.

FIGS. 6A-613 show the predicted stresses at the quarter-
thickness plane. FIG. 6A shows the radial stresses and FIG.
6B shows the tangential stresses. Predictions are shown with

55 lines with points and symbols and the theoretical stresses in
solid line. Agreement between the predictions and the theo-
retical results improves as the grid is refined from 21 x21 x7 to
4lx4lx11 to 6lx6lx11 to 81 x81x11.At81x81x11 gridreso-
lution, the predictions agree very well with the theory. As

60 anticipated, any errors in the predictions at this stage may be
due to the grid nonorthogonality, as discussed earlier, but it
should be noted that the theoretical solution itself is also
approximate.

FIGS. 7A-713 show the predicted stresses at the mid-plane
65 using the same grid resolutions as with FIGS. 6A-6B. FIG.

7A shows the radial stresses and FIG. 7B shows the tangential
stresses. Predictions are shown with lines with points and
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symbols and the theoretical stresses in solid line. As expected,
the predictions are progressively improved as the grid is
refined.

FIG. 8A is a 61x61 grid of a cross-sectional view of a
representative 61 x61 x11 grid at any axial station of a thin
solid disk for use with an embodiment of the invention. The
three-dimensional grid for FIG. 8A has a 61 x61 grid and 11
points along the axial direction. FIG. 8B is a perspective view
of the grid of FIG. 8A.

Rotating Thin Gear
FIG. 9 is a cross-sectional grid of a 19-tooth gear for use

with an embodiment of the invention. In the case of a gear,
there is no theoretical solution available. Since the predic-
tions have been validated for the annular geometries as dis-
cussed above, results for a thin 19-tooth gear are presented
here as a realistic application. There are some annulus solu-
tion characteristics present in the gear predictions, as shown
in the following figures. FIG. 10A shows a comparison
among radial stress distributions along three "radial' lines,
first one joining the inner radius with one end of the tooth at
the base represented by a solid line, the second one between
the inner radius and the top end of the tooth represented by a
solid line with crosses, and the third one between the inner
radius and the top middle point on the tooth. Similarly, FIG.
10B shows the comparison among the three tangential stress
distributions along these three "radial' lines. The stresses
along the "radial' lines joining the inner radius and the top
middle point on the tooth look similar to the results for the
annulus.

A physics based first principles approach is adopted to
model and simulate vibration signatures from an idealized
gear such as a thin spur gear of the type represented by FIG.
9. The governing equations are solved using a finite-differ-
ence approach as described above. The velocity-stress form
of elastodynamic partial differential equations as used in
earthquake signature modeling has been used here with the
essential difference that in the present case, the velocity-
stress system is solved in generalized curvilinear coordinates
and the system being essentially dynamic entails the prescrip-
tion of generalized characteristic boundary conditions based
on the theory of hyperbolic systems; thus, artificial wave
reflection and wave attenuation problems are totally elimi-
nated. The vibration signatures are thus directly obtained in
the time domain. A second-order accurate in time and space
time-staggered leap-frog scheme is used to integrate the time-
dependent partial differential equations. Idealized signatures,
normal as well as damage vibration signatures, ensuing from
an impulsive rotation of the gear are obtained and compared;
normal signature is taken to be the one correspondent with
homogeneous material properties throughout the domain.
Damage signatures correspond to a case where the rigidity of
one of the gear teeth is locally reduced. It is observed that
significant deviations from the normal signature occur in
amplitude and phase due to this damage. Using this approach,
baseline or reference signatures can be obtained for any struc-
tural subsystem which can be used to calibrate and validate
various damage detection algorithms for such systems.

Normal vibrations of an idealized multi-teeth steel gear are
simulated by impulsively rotating the gear. This throws the
gear into free vibrations about an equilibrium state that would
be attained by it, if it had been set into rotation gradually from
an initial state of rest. After about four rotations, the gear
attains this steady state.

The simulation considered corresponds to all the gear teeth
except one, labeled tooth #1, having uniform material prop-
erties as those of industrial steel. The shear modulus or the

rigidity of tooth #1 is decreased in a certain fashion over the
region shown in FIG. 11. This is just to mimic a damage state
that would yield distinctly different vibration signatures from
this particular tooth from those from the rest of the gear teeth.

5 The gear is impulsively rotated at 6,000 rpm. The elastody-
namic partial differential equations (pde), three for the veloc-
ity vector and six for the symmetric stress tensor, are inte-
grated in time, using fully characteristic boundary conditions
as disclosed herein. An attractive element of the characteristic

io boundary condition approach is that the artificial wave attenu-
ation and wave reflection problems associated with the tradi-
tional boundary condition approach are entirely eliminated.
The velocity-stress form of the elastodynamic pde has been
used in geophysics to predict reference earthquake signa-

15 tures. The integration is carried out until the end of the fourth
rotation of the gear, when the vibrations have essentially died
out and the equilibrium stress state is achieved. Thus the
steady-state solution is obtained for radial, tangential and
shear stress distribution all over the gear in constant rotation

20 at 6 1 000 rpm. No grid independence study has been per-
formed for this embodiment. But, having conducted the grid
independence study using the present methodology for other
geometries described above, the accuracy of the results pre-
sented here is believed to be adequate in the present context.

25 Also, as noted above, a small measure of Coriolis effect may
be present even at 6,000 rpm during the dynamic state of the
gear.

The results from the simulation are compared side by side
in terms of the time evolution of radial, tangential and shear

30 stresses at selected locations on two selected gear teeth, tooth
#1 and tooth #10, as shown in FIGS. I2A-12C,13A-13B and
14A-14B. Also shown is the steady state distribution of radial
stress, all over the gear, with the damage tooth #1, in FIG. 15.
The radial and tangential directions in the present case cor-

35 respond to the two orthogonal generalized curvilinear coor-
dinates, as shown in FIG. 11.

A comparison of signatures from the damaged tooth #1 and
a normal tooth #10 demonstrates that they vary significantly
from each other. Also, certain insights can be drawn from

40 simulations such as the present one that would aid in better
design technologies of such systems. For example, as shown
in FIG. 16, a comparison of time signatures of shear stresses
corresponding to two cases, one where all the teeth are normal
and the other where tooth #1 is damaged, reveals that the

45 signal (shear stress wave) from the damaged tooth#1 reaches
tooth #10 in about 0.3 millisecond, subsequent to an impul-
sive rotation.

These simulations can be used in conjunction with damage
detection algorithms such as wavelets and machine learning

50 methods for isolation, diagnosis and prognosis of system
damage states. Such structural damage, amongst others, can
be caused by unwanted material property variation due to
thermal effects or manufacturing faults, sudden impact and
repetitive loading, during the system operation. A wide vari-

55 ety of these physics-based simulations could be carried out to
compute various forms of normal and damage signatures.
These signatures couldthen be used as reference signatures to
calibrate and validate various damage detection algorithms

60	 CONCLUSION

A new three-dimensional formulation in generalized cur-
vilinear coordinates for the velocity-stress elastic system has
been presented for a finite-difference solution over two and

65 three-dimensional axisymmetric geometries as well as a gen-
eral two-dimensional gear geometry. The axisymmetric pre-
dictions are validated by comparing them with steady-state
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axisymmetrical analytical solutions. Steady-state as well as
unsteady predictions are also made for a thin multi -tooth gear.
The various embodiments can be used to generate time-de-
pendent stress data corresponding to a variety of boundary
conditions on a variety of dynamical systems such as a rotat-
ing gear simulating a gear pair in mesh, a rocket motor geom-
etry and the space shuttle orbiter wing leading edge subjected
to external dynamical loading. These numerically generated
vibrations data can, in turn, be used to characterize different
vibration states that the system may pass through.

It is understood that the various embodiments may be
performed by a processor in response to computer-readable
instructions stored on a computer-usable medium, such as a
fixed or removable storage media. Results may be presented
to a user in any of a variety of formats, such as tabular,
graphical or animation through the use of an appropriate user
interface. Such computer systems are well understood.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement that is calculated to
achieve the same purpose may be substituted for the specific
embodiments described. Many adaptations of the invention
will be apparent to those of ordinary skill in the art. Accord-
ingly, this application is intended to cover any adaptations or
variations of the invention. It is manifestly intended that this
invention be limited only by the following claims and equiva-
lents thereof.

What is claimed is:
1. A computer implemented method of simulating time-

dependent stress data for a structural system, the method
comprising:

generating, using a computer system, an elliptic grid rep-
resentative of a geometry of the structural system, the
grid comprising a plurality of grid cells;

solving, using the computer system, a three dimensional
Finite Difference Model of elastodynamic partial differ-
ential equations having velocity components and stress
components in generalized curvilinear coordinates over
each grid cell of the elliptic grid;

updating, using the computer system, the geometry of the
structural system in response to solving the elastody-
namic partial differential equations;

generating, using the computer system, a revised elliptic
grid representative of the updated geometry of the struc-
tural system; and

animating, using the computer system, a solution of the
elastodynamic partial differential equations in time as
the simulation proceeds.

2. The method of claim 1, wherein solving the elastody-
namic partial differential equations further comprises solv-
ing, using the computer system, the equations directly in the
time domain.

3. The method of claim 1, further comprising:
introducing, using the computer system, a fault into the

elliptic grid and allowing the fault to propagate in time
while alternating solving the equations and generating
revised elliptic grids.

4. The method of claim 1, wherein the partial differential
equations in generalized curvilinear coordinates, (, r^, ^, e) in
flux-conservative form are given by:

a,(A/J)

aJ(A/J)^r (1/J)(S,B+^ C+^,D)]

+a,[(A/J)gr (1/r)(gxB+q,C+q=D)]

+a,;[(A1J)^r (1/J)(S,B+^YC+^,D)]=nip

14
where R is a right hand side column vector containing cen-
trifugal and Coriolis terms associated with the rotating frame
of reference and, additionally, terms containing spatial
derivatives of the elastic constants for non-homogeneous

5 bodies, and J is the Jacobian of coordinate transformation,
where a is the partial derivative with respect

to the particular generalized coordinate variable ^, 'q, ^; e e is
the time coordinate in the generalized coordinate space and
where the metric quantities fi t, ^,, etc, have their usual mean-

io ings. The left hand side vectors are given by

A=[pu, pv, pw T_ TY_ T_ T Z,Za]z

B=[T_, txy, T_ (k,+2µ)u, µv, µw k,u, 0, k,u]7

15	 C=[t, tom„ T, k,v, µu, 0, (k,+2µ)v, µw k,v]7

D=[T_, T, t., kw, 0µu, kw, µv, (k,+2µ)w]7

where p is the material density of the structural medium; u, v,
w are the three velocity components tiii are the 6 components

20 of the symmetric stress tensor; X and µ are the Lame con-
stants. A is the solution vector, and B, C and D are the flux
vectors

Nomenclature
J=Jacobian of coordinate transformation

25	 R=right hand side vector
u,v,w=velocity components
x,y,z, t—Cartesian coordinates and the time coordinate
X, µ=Lame constants

30	 p=material density
ti—symmetric stress tensor

'q, ^, e=generalized curvilinear coordinates and time
coordinate

Subscript
35	 i, j, k=indices for coordinate directions

Superscript
T=vector transpose.
5. The method of claim 1, further comprising:
generating, using the computer system, stress boundary

40 conditions for the partial differential equations in gen-
eralized curvilinear coordinates from a second order
tensor transformation from a Cartesian coordinate sys-
tem.

6. The method of claim 1, wherein solving the elastody-
45 namic partial differential equations further comprises inte-

grating, using the computer system, the velocity and stress
components of the equations using a second -order accurate in
time and space, time-staggered leap frog method.

50	
7. The method of claim 1, further comprising:
generating, using the computer system, vibration signa-

tures from the time-dependent forcing functions.
8. The method of claim 1, wherein the step of solving the

three dimensional Finite Difference Model of elastodynamic
55 partial differential equations includes solving, using the com-

puter system, a set of nine elastodynamic partial differential
equations, three partial differential equations for the three
velocity components and six partial differential equations for
the six stress tensor components.

60 9. A computer implemented method of designing a struc-
tural system comprising:

generating, using a computer system, an elliptic grid rep-
resentative of a geometry of the structural system, the
grid comprising a plurality of grid cells;

65 solving, using the computer system, a three dimensional
Finite Difference Model of elastodynamic partial differ-
ential equations having velocity components and stress
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components in generalized curvilinear coordinates over
each grid cell of the elliptic grid;

identifying, using the computer system, areas of local
maxima of stress directly at any given time in response to
solving the elastodynamic partial differential equations;
and

modifying, using the computer system, the design of the
structural system in response to identifying the areas of
local maxima of stress.

10. The method of claim 9, wherein modifying the design
of the structural system in response to identifying the areas of
local maxima of stress further comprises identifying, using
the computer system, locations for sensor placement on the
structural system corresponding to the areas of local maxima
of stress for health monitoring of the structural system.

11. The method of claim 9, further comprising:
animating, using the computer system, a solution of the

elastodynamic partial differential equations in time as
the method proceeds.

12. The method of claim 9, wherein solving the elastody-
namic partial differential equations further comprises solv-
ing, using the computer system, the equations directly in the
time domain.

13. The method of claim 9, wherein solving the elastody-
namic partial differential equations further comprises inte-
grating, using the computer system, the velocity and stress
components of the equations using a second-order accurate in
time and space, time-staggered leap frog method.

14. The method of claim 9, wherein solving the three
dimensional Finite Difference Model of elastodynamic par-
tial differential equations includes solving, using the com-
puter system, a set of nine elastodynamic partial differential
equations, three elastodynamic partial differential equations
for the three velocity components and six elastodynamic par-
tial differential equations for the six stress tensor compo-
nents.

15. A computer implemented method of monitoring the
health of a structural system, the method comprising:

generating, using a computer system, an elliptic grid rep-
resentative of a geometry of the structural system, the
grid comprising a plurality of grid cells;

solving, using the computer system, a three dimensional
Finite Difference Model of elastodynamic partial differ-
ential equations having velocity components and stress
components in generalized curvilinear coordinates over
each grid cell of the elliptic grid;

generating, using the computer system, reference vibration
signature corresponding to a given portion of the struc-
tural system in response to solving the elastodynamic
partial differential equations; and

comparing, using the computer system, the reference
vibration signature corresponding to the given portion of
the structural system to a predicted vibration signature
of the given portion of the structural system by a
machine learning method;

displaying, using the computer system, the reference vibra-
tion signature and the measured vibration signature in
real time during the operation of the structural system;
and

dynamically assessing, using the computer system, the
health of the structural system by quantifying the devia-
tion of the measured vibration signature from the refer-
ence vibration signature directly in real time during the
operation of the structural system.

16
16. The method of claim 15, wherein solving the elastody-

namic partial differential equations further comprises solv-
ing, using the computer system, the equations directly in the
time domain.

5	 17. The method of claim 15, further comprising:
generating, using the computer system, stress boundary

conditions for the partial differential equations in gen-
eralized curvilinear coordinates from a second order
tensor transformation from a Cartesian coordinate sys-

10	 tem.
18. The method of claim 15, wherein solving the elastody-

namic partial differential equations further comprises inte-
grating, using the computer system, the velocity and stress
components of the equations using a second-order accurate in

15 time and space, time-staggered leap frog method.
19. The method of claim 15, wherein solving the three

dimensional Finite Difference Model of elastodynamic par-
tial differential equations includes solving, using the com-
puter system, a set of nine elastodynamic partial differential

20 equations, three elastodynamic partial differential equations
for the three velocity components and six elastodynamic par-
tial differential equations for the six stress tensor compo-
nents.

20. The method of claim 15, wherein the reference vibra-
25 tion signature is a reference displacement signature and the

measured vibration signature is a measured displacement
signature.

21. The method of claim 15, wherein the reference vibra-
tion signature is a reference acceleration signature and the

30 measured vibration signature is a measured acceleration sig-
nature.

22. The method of claim 15, wherein the reference vibra-
tion signature is a reference stress signature and the measured
vibration signature is a measured stress signature.

35 23. A computer readable storage medium storing computer
executable instructions which when executed on a computer
to perform a method of simulating time-dependent stress data
for a structural system, the medium comprising instructions
for:

40 generating an elliptic grid representative of a geometry of
the structural system, the grid comprising a plurality of
grid cells;

solving a three dimensional Finite Difference Model of a
set of nine elastodynamic partial differential equations

45 having, three elastodynamic partial differential equa-
tions for the three velocity components and six elasto-
dynamic partial differential equations for the six stress
tensor components in generalized curvilinear coordi-
nates over each grid cell of the elliptic grid;

50 updating the geometry of the structural system in response
to solving the elastodynamic partial differential equa-
tions;

automatically generating in dynamic simulation time a
revised elliptic grid representative of the updated geom-

55	 etry of the structural system; and
animating, using the computer system, a solution of the

elastodynamic partial differential equations in time as
the simulation proceeds.

24. A computer implemented method of designing a struc-
60 rural health monitoring system that monitors the health of the

structural system during its operation, comprising:
generating, using a computer system, an elliptic grid rep-

resentative of a geometry of the structural system, the
grid comprising a plurality of grid cells;

65 solving, using the computer system, a three dimensional
Finite Difference Model of elastodynamic partial differ-
ential equations having velocity components and stress
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components in generalized curvilinear coordinates over
each grid cell of the elliptic grid;

identifying, using the computer system, areas of local
maxima of stress directly at any given time in response to
solving the elastodynamic partial differential equations; s

identifying, using the computer system, locations for sen-
sor placement corresponding to the areas of local
maxima of stress for health monitoring of the structural
system; and

comparing, using the computer system, stress data from the io
sensors with the three dimensional stress solution by
using machine learning methodology;

18
displaying, using the computer system, the three dimen-

sional stress solution and the stress data from the sensors
in real time during the operation of the structural system;
and

determining, using the computer system, if operation of the
structural system is safe or if the structural system is
about to fail.
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